Anomalous diffusion in heterogeneous glass-forming liquids: temperature-dependent behavior.
نویسنده
چکیده
In a preceding paper, Langer and Mukhopadhyay [Phys. Rev. E 77, 061505 (2008)] studied the diffusive motion of a tagged molecule in an heterogeneous glass-forming liquid at temperatures just above a glass transition. Among other features of this system, we postulated a relation between heterogeneity and stretched-exponential decay of correlations, and we also confirmed that systems of this kind generally exhibit non-Gaussian diffusion on intermediate length and time scales. Here I extend this analysis to higher temperatures approaching the point where the heterogeneities disappear and thermal activation barriers become small. I start by modifying the continuous-time random-walk theory proposed in Langer and Mukhopadhyay and supplement this analysis with an extension of the excitation-chain theory of glass dynamics. I also use a key result from the shear-transformation-zone theory of viscous deformation of amorphous materials. Elements of each of these theories are then used to interpret experimental data for orthoterphenyl, specifially, the diffusion and viscosity coefficients and neutron-scattering measurements of the self-intermediate scattering function. Reconciling the theory with these data sets provides insights into the crossover between super-Arrhenius and Arrhenius dynamics, length scales of spatial heterogeneities, violation of the Stokes-Einstein relation in glass-forming liquids, and the origin of stretched-exponential decay of correlations.
منابع مشابه
A computational study of diffusion in a glass-forming metallic liquid
Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In the computational study reported here, we examin...
متن کاملTransport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature.
It is becoming common practice to partition glass-forming liquids into two classes based on the dependence of the shear viscosity η on temperature T. In an Arrhenius plot, ln η vs 1/T, a strong liquid shows linear behavior whereas a fragile liquid exhibits an upward curvature [super-Arrhenius (SA) behavior], a situation customarily described by using the Vogel-Fulcher-Tammann law. Here we analy...
متن کاملDielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids.
We present shear mechanical and dielectric measurements taken on seven liquids: triphenylethylene, tetramethyltetra-phenyltrisiloxane (Dow Corning 704 diffusion pump fluid), polyphenyl ether (Santovac 5 vacuum pump fluid), perhydrosqualene, polybutadiene, decahydroisoquinoline (DHIQ), and tripropylene glycol. The shear mechanical and dielectric measurements are for each liquid performed under i...
متن کاملQuantifying spatially heterogeneous dynamics in computer simulations of glass-forming liquids
We examine the phenomenon of dynamical heterogeneity in computer simulations of an equilibrium, glass-forming liquid. We describe several approaches for quantifying the spatial correlation of single-particle motion, and show that spatial correlations of particle displacements become increasingly long range as the temperature decreases toward the mode-coupling critical temperature.
متن کاملRelaxation Decoupling in Metallic Glasses at Low Temperatures.
Upon cooling, glass-forming liquids experience a dynamic decoupling in the fast β and slow α process, which has greatly influenced glass physics. By exploring an extremely wide temporal and temperature range, we find a surprising gradual change of the relaxation profile from a single-step to a two-step decay upon cooling in various metallic glasses. This behavior implies a decoupling of the rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 78 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2008